#### Lab Station 1: Elastic and Spring Force

| Force<br>Applied<br>(weight<br>added)<br>(N) | Thin<br>Rubber<br>band<br>Stretched<br>Length<br>(m) | Thick Rubber<br>Band Stretched<br>Length (m) | Material<br>of your<br>choice:<br>Stretched<br>Length<br>(m) | pplied (N) |  |  |  |  |  |   |
|----------------------------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------|--|--|--|--|--|---|
| 2 Newton                                     |                                                      |                                              |                                                              | orce A     |  |  |  |  |  |   |
| 4 Newton                                     |                                                      |                                              |                                                              | ч          |  |  |  |  |  |   |
| 5 Newton                                     |                                                      |                                              |                                                              |            |  |  |  |  |  | + |

Stretched Length

- 1) What type of mathematical relationship is demonstrated in Graph I (Look at graph examples at the front of the room)? Why?
- 2) The slope of your graph represents the Spring Constant of your material. Calculate the Spring Constant (slope) of each of your materials.
- 3) How does the Spring Constant of a thick rubber band compare to that of a thin rubber band?
- 4) What does the Spring Constant tell you about the elasticity (stretchiness) of each material tested?

## Lab Station 2: Torque Lab

## Before you begin:

Q1: At which hook do you think you will need the least amount of force? Why do you think this?

Q2: At which hook do you think you will need the most force? Why do you think this?

| Hook | Force (N) to lift/rotate the "arm" |
|------|------------------------------------|
| 1    |                                    |
| 2    |                                    |
| 3    |                                    |
| 4    |                                    |

**Q3**. At which hook was the least amount of force necessary to lift/rotate the arm?

Q4. At which hook was the most amount of force necessary to lift/rotate the arm?

Q5. How can you apply this concept to the design of your prototype of the prosthetic?

#### Lab Station 3: Friction Lab

Use this equation  $\{\mu = \frac{F_f}{W}\}$  to find the friction coefficient between each material and panel board

| Material             | Friction Coefficient |
|----------------------|----------------------|
| Silicone             |                      |
| Vinyl (Black)        |                      |
| Polyurethane (White) |                      |
| Sandpaper            |                      |
| Bare Wood            |                      |

- 1. How does the surface type affect the frictional force?
- 2. How could you use the friction coefficient in your PBL presentation?

# Lab Station 4: Engineering of "Chomper Dinosaur"

Use and observe how the toy works. Identify each of the following by **writing a brief description**, **drawing**, **and labeling** each on the diagram.

1) Ventral side

- 2) Dorsal side
- 3) Rigid structure (i.e. "bone")
- 4) Constraints to rigid structure (i.e. "ligament") green
- 5) Mechanism for flexion yellowa) Source of force applied (i.e. "muscle")
  - b) Transmits force to structure (i.e. "tendon")
- 6) Mechanism for extension red
  - a) Source of force applied (i.e. "muscle")
  - b) Transmits force to structure (i.e. "tendon")
- 7) What is the type of force used for flexion?
- 8) What is the type of force used for extension?

